88 research outputs found

    Acoustic spectral imaging and transfer learning for reliable bearing fault diagnosis under variable speed conditions.

    Get PDF
    Incipient fault diagnosis of a bearing requires robust feature representation for an accurate condition-based monitoring system. Existing fault diagnosis schemes are mostly confined to manual features and traditional machine learning approaches such as artificial neural networks (ANN) and support vector machines (SVM). These handcrafted features require substantial human expertise and domain knowledge. In addition, these feature characteristics vary with the bearing's rotational speed. Thus, such methods do not yield the best results under variable speed conditions. To address this issue, this paper presents a reliable fault diagnosis scheme based on acoustic spectral imaging (ASI) of acoustic emission (AE) signals as a precise health state. These health states are further utilized with transfer learning, which is a machine learning technique, which shares knowledge with convolutional neural networks (CNN) for accurate diagnosis under variable operating conditions. In ASI, the amplitudes of the spectral components of the windowed time-domain acoustic emission signal are transformed into spectrum imaging. ASI provides a visual representation of acoustic emission spectral features in images. This ensures enhanced spectral images for transfer learning (TL) testing and training, and thus provides a robust classifier technique with high diagnostic accuracy

    Deep Learning Aided Data-Driven Fault Diagnosis of Rotatory Machine: A Comprehensive Review

    Get PDF
    This paper presents a comprehensive review of the developments made in rotating bearing fault diagnosis, a crucial component of a rotatory machine, during the past decade. A data-driven fault diagnosis framework consists of data acquisition, feature extraction/feature learning, and decision making based on shallow/deep learning algorithms. In this review paper, various signal processing techniques, classical machine learning approaches, and deep learning algorithms used for bearing fault diagnosis have been discussed. Moreover, highlights of the available public datasets that have been widely used in bearing fault diagnosis experiments, such as Case Western Reserve University (CWRU), Paderborn University Bearing, PRONOSTIA, and Intelligent Maintenance Systems (IMS), are discussed in this paper. A comparison of machine learning techniques, such as support vector machines, k-nearest neighbors, artificial neural networks, etc., deep learning algorithms such as a deep convolutional network (CNN), auto-encoder-based deep neural network (AE-DNN), deep belief network (DBN), deep recurrent neural network (RNN), and other deep learning methods that have been utilized for the diagnosis of rotary machines bearing fault, is presented

    Multi-sensor fusion-based time-frequency imaging and transfer learning for spherical tank crack diagnosis under variable pressure conditions.

    Get PDF
    In this paper, a crack diagnosis framework is proposed that combines a new signal-to-imaging technique and transfer learning-aided deep learning framework to automate the diagnostic process. The objective of the signal-to-imaging technique is to convert one-dimensional (1D) acoustic emission (AE) signals from multiple sensors into a two-dimensional (2D) image to capture information under variable operating conditions. In this process, a short-time Fourier transform (STFT) is first applied to the AE signal of each sensor, and the STFT results from the different sensors are then fused to obtain a condition-invariant 2D image of cracks; this scheme is denoted as Multi-Sensors Fusion-based Time-Frequency Imaging (MSFTFI). The MSFTFI images are subsequently fed to the fine-tuned transfer learning (FTL) model built on a convolutional neural network (CNN) framework for diagnosing crack types. The proposed diagnostic scheme (MSFTFI + FTL) is tested with a standard AE dataset collected from a self-designed spherical tank to validate the performance under variable pressure conditions. The results suggest that the proposed strategy significantly outperformed classical methods with average performance improvements of 2.36–20.26%

    Bearing fault diagnosis using multidomain fusion-based vibration imaging and multitask learning.

    Get PDF
    Statistical features extraction from bearing fault signals requires a substantial level of knowledge and domain expertise. Furthermore, existing feature extraction techniques are mostly confined to selective feature extraction methods namely, time-domain, frequency-domain, or time-frequency domain statistical parameters. Vibration signals of bearing fault are highly non-linear and non-stationary making it cumbersome to extract relevant information for existing methodologies. This process even became more complicated when the bearing operates at variable speeds and load conditions. To address these challenges, this study develops an autonomous diagnostic system that combines signal-to-image transformation techniques for multi-domain information with convolutional neural network (CNN)-aided multitask learning (MTL). To address variable operating conditions, a composite color image is created by fusing information from multi-domains, such as the raw time-domain signal, the spectrum of the time-domain signal, and the envelope spectrum of the time-frequency analysis. This 2-D composite image, named multi-domain fusion-based vibration imaging (MDFVI), is highly effective in generating a unique pattern even with variable speeds and loads. Following that, these MDFVI images are fed to the proposed MTL-based CNN architecture to identify faults in variable speed and health conditions concurrently. The proposed method is tested on two benchmark datasets from the bearing experiment. The experimental results suggested that the proposed method outperformed state-of-the-arts in both datasets

    Transportation-mission-based Optimization of Heterogeneous Heavy-vehicle Fleet Including Electrified Propulsion

    Get PDF
    Commercial-vehicle manufacturers design vehicles to operate over a wide range of transportation tasks and driving cycles. However, certain possibilities of reducing emissions, manufacturing and operational costs from end vehicles are neglected if the target range of transportation tasks is narrow and known in advance, especially in case of electrified propulsion. Apart from real-time energy optimization, vehicle hardware can be meticulously tailored to best fit a known transportation task. As proposed in this study, a heterogeneous fleet of heavy-vehicles can be designed in a more cost- and energy-efficient manner, if the coupling between vehicle hardware, transportation mission, and infrastructure is considered during initial conceptual-design stages. To this end, a rather large optimization problem was defined and solved to minimize the total cost of fleet ownership in an integrated manner for a real-world case study. In the said case-study, design variables of optimization problem included mission, recharging infrastructure, loading--unloading scheme, number of vehicles of each type, number of trips, vehicle-loading capacity, selection between conventional, fully electric, and hybrid powertrains, size of internal-combustion engines and electric motors, number of axles being powered, and type and size of battery packs. This study demonstrated that by means of integrated fleet customization, battery-electric heavy-vehicles could strongly compete against their conventional combustion-powered counterparts. Primary focus has been put on optimizing vehicle propulsion, transport mission, infrastructure and fleet size rather than routing

    Study of Different Deep Learning Approach with Explainable AI for Screening Patients with COVID-19 Symptoms: Using CT Scan and Chest X-ray Image Dataset

    Full text link
    The outbreak of COVID-19 disease caused more than 100,000 deaths so far in the USA alone. It is necessary to conduct an initial screening of patients with the symptoms of COVID-19 disease to control the spread of the disease. However, it is becoming laborious to conduct the tests with the available testing kits due to the growing number of patients. Some studies proposed CT scan or chest X-ray images as an alternative solution. Therefore, it is essential to use every available resource, instead of either a CT scan or chest X-ray to conduct a large number of tests simultaneously. As a result, this study aims to develop a deep learning-based model that can detect COVID-19 patients with better accuracy both on CT scan and chest X-ray image dataset. In this work, eight different deep learning approaches such as VGG16, InceptionResNetV2, ResNet50, DenseNet201, VGG19, MobilenetV2, NasNetMobile, and ResNet15V2 have been tested on two dataset-one dataset includes 400 CT scan images, and another dataset includes 400 chest X-ray images studied. Besides, Local Interpretable Model-agnostic Explanations (LIME) is used to explain the model's interpretability. Using LIME, test results demonstrate that it is conceivable to interpret top features that should have worked to build a trust AI framework to distinguish between patients with COVID-19 symptoms with other patients.Comment: This is a work in progress, it should not be relied upon without context to guide clinical practice or health-related behavior and should not be reported in news media as established information without consulting multiple experts in the fiel

    Preclinical HbA1c level studies of makaradhwaja and siddha makaradhwaja after chronic administration to male Sprague-Dawley rats

    Get PDF
    Background: Makaradhwaja (MD) and Siddha Makaradhwaja (SMD) are Ayurvedic preparations used as traditional medicines for different clinical indications in the rural population. Principle purpose of using MD is controlling hypotension and while SMD is useful in peripheral circulatory failure treatment. In this study we evaluate the influence of these preparations on HbA1c (%) level.Methods: To find out the average plasma glucose concentration over prolonged period of time, MD and SMD were administered chronically to the male Sprague-Dawley rats at a dose of 40 mg/kg. After 28 days of chronic administration of MD and SMD the following changes were noted and Glycated Hemoglobin (HbA1c) level was determined.Results: The results of the study of in vitro quantitative determination of rat HbA1c concentrations in serum studies, MD demonstrated a negligible (0.61%) decrease in the HbA1c level of the blood of the male rat (p=0.902). Whereas SMD demonstrated a negligible (1.83%) increase in the HbA1c level of the blood of the male rat (p=0.782).Conclusions: Between these preparation MD slightly decreases HbA1c level of the blood of the male rat, whereas SMD found in increasing HbA1c level of the blood of the male rat

    Gearbox fault diagnosis using improved feature representation and multitask learning

    Get PDF
    A gearbox is a critical rotating component that is used to transmit torque from one shaft to another. This paper presents a data-driven gearbox fault diagnosis system in which the issue of variable working conditions namely uneven speed and the load of the machinery is addressed. Moreover, a mechanism is suggested that how an improved feature extraction process and data from multiple tasks can contribute to the overall performance of a fault diagnosis model. The variable working conditions make a gearbox fault diagnosis a challenging task. The performance of the existing algorithms in the literature deteriorates under variable working conditions. In this paper, a refined feature extraction technique and multitask learning are adopted to address this variability issue. The feature extraction step helps to explore unique fault signatures which are helpful to perform gearbox fault diagnosis under uneven speed and load conditions. Later, these extracted features are provided to a convolutional neural network (CNN) based multitask learning (MTL) network to identify the faults in the provided gearbox dataset. A comparison of the experimental results of the proposed model with that of several already published state-of-the-art diagnostic techniques suggests the superiority of the proposed model under uneven speed and load conditions. Therefore, based on the results the proposed approach can be used for gearbox fault diagnosis under uneven speed and load conditions
    • …
    corecore